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CERTAIN PROBLEMS OF AN ARBITRARILY ORIENTED STRINGER 
IN A COMPOSITE ANISOTROPIC PLANE* 

A.F. KPXVOI, G.YA. POPOV and M.V. RADIOLLO 

The fundamental solution for a composite anisotropic plane is constructed 
taking defects into account onthe line separating the materials. On this 
basis, a mathematical formulation is given of the contact problem for an 
arbitrarily oriented stringer located in one of the half-planes, in the 
form of a singular integral equation with a fixed singularity. The 
solvability of the equation obtained is proved. The power nature of the 
behaviour of the solution isclarified (by using the asymptotic properties 
of Cauchy-type integrals), and the conditions are established for the 
satisfaction of which the mentioned asymptotic form is strengthened by a 
logarithmic polynomial. An exact solution is constructed for the problem 
of a semi-infinite stringer leaving the line of material separation at 
an arbitrary angle, and an analogous problem for a finite inextensible 
stringer. It is hown that the asymptotic form of the contact shear 
stresses at the point of departure does not depend on the elastic 
properties of the stringer. 

Solutions of analogous problems for anisotropicand orthotropichalf- 
planes can be obtained by a passage to the limit. Such problems were 
examined earlier for a finite stringer in an anisotropic half-plane /l/ 
and for a semi-infinite stringer perpendicular to the boundary of an 
orthotropic half-plane /2, 3,'. An incorrect assumption was made here 
about the power-logarithmic nature of the behaviour of the solution at 
the point of stringer departure at the boundary (the authors incorrectly 
utilized the asymptotic properties of Cauchy-type integrals). The error 
of the result /2/ is mentioned in /3/ where an exact solution of the 
problem is constructed. However, the true reason for the error is not 
given here, in which connection a false deduction is made about the 
fact that the asymptotic form of Cauchy-type integrals does not permit 
a unique solution of the question of the nature of the singularity if it 
is assumed to be power-logarithmic. The error of this deduction is shown 
below. 

1. Construction of the fundamental solution. Consider a piecewise-homogeneous 
plane consisting of two different anisotropic half-planes (x2 0, ly I< m) not completely 
contacting along the line I = 0. Four of the following quantities 

H,*(!/)=cpn+(Y)+cp,-(y) (a=Z 3,4,5iY EL) (1.1) 

%*(Y)=%tfO,Y), %f(Y)=Tx,(-t01Y)t 

are considered to be known on sections where there is no direct interaction between the half- 
planes (5 = 0, yE t), 

Let a concentrated force with the projectionsP%and Ps on the I and y coordinate axes, 
respectively, be applied to an arbitrary point (zO, y,) of the plane. It is required to find 
the components of the stress and strain state of the plane. 

We will call the matrix U = (u,j (2, y, zO, yO)} (n = 1, 2, . . ., 5; j = 1, 2) the fundamental 
solution (in the sense of the theory of generalized functions) of the plane problem for a 
composite anisotropic medium if its components satisfy the system of equations 

@l*‘utj + 3S’U*j = S,,S (5 - 509 Y - Y$ 

allU,j + a,‘U,j G 8*j& (I - 501 Y - Yo) 

*Prikl.l4atem.Mekhan.,50,4,622-632,1986 
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a mn = i3 (z) at + 8 (--x) Gl., &ml is the Kronecker delta, 6(x, Y) and e(x) are the Dirac and 
Heaviside functions, and ak,a& are coefficients of the generalized Hooke's law /4/ for the 
half-planes x>O and x< 0, respectively. 

For j = 1 system (1.2) describes the stress andstrainstate of a plane due the action 
of a single concentrated force in the direction of the x-axis, and for j = 2 in the direction 
of the g-axis. 

By virtue of (1.1) the components of the matrix U satisfy the following conditions on 
the line of connection of the materials I = 0 

we apply 
transform /5/ 

unj (+ 0, Y* x09 YO) rf: utaj (- 0, Y, ~01 ye) = Hi$ (Y) (1.3) 
(Pz = 2,3,4,5;y G L) 

a Fourier integral transform in CJ (with the parameter 0) and a generalized 
in x (with parameter a) to the system (1.2). Introducing the notation 

vii =: ~~~~(x)t+%x, vzj= - i ~~~j(x~e~~~x, 
0 -m 

4Tj (I) = S Unj (2, y) eiBlidy 
-m 

for the semitransform, and relying on the known properties /6/ of the latter, we obtain a 
Riemann matrix problem inthe semitransform of the stress tensor components 

B+(a)V+(a)=B-(a)V(a)+F(a) (-cQ<a<m) (1.4) 
-I 

%j --iia 0 -if3 

v*g+ 03 , 9*(a)= 0 -@ --ia 

f 
USj I 1,* I,* 1.4 I 

11*(&B)= a1z*aa-- alafap + a&P, 1&(a,~)=a$zfa~ - 

azo*4+%*P 

The solution (1.4) is constructed successfully by reducing the problem to the solution 
of a Riemann scalar problem. To this end, we first consider the following problem about a 
jump: 

Their solution has the form 

Eliminating V,j (n = ‘%,2) in the third relationship of (1.41, we arrive at the above- 
mentioned Riemann scalar problem in the function Qj (a) 

p~pu~j(~)zr;;p,eu,j(a)-(QaR-GaR) (- 00 <a< CQ) (1.5) 

~~~=a2**~*(a,B)~*(a,13), cl*(a,P)=(a- Bzl*)@-Fze*) 

&3= exp[i (ax0 + BY*)] 5 eK+X(%B) 4nj 
?n=1 
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The known property Imz$>O /4/ of the roots of the characteristic polynomials Pa,3 f 

involves the following fact. 

Lemma. The function CJ-(Z, @j/q* (2, #3) (if-&, fi)&‘(z, f3)) is-analytic for @> 0 in the lower 

half-plane Imz<O (the upper half-plane Imz>O) and for fi (0 in the upper (lower) half- 
plane of the complex plane z = a $ iE,, and its index on the line z = a is zero. 

Relying on this assertion, we solve problem (1.5) and thereby problem (1.4) as well. 
The transforms &j+ (n = 2, 3), &j* (n = 2, 3, 4, 5) are contained in the expressions obtained for 
the transform of the fundamental matrix components. Since four functions from (1.1) are 
considered to be known on the line 5 = 0, the solution found in a should be inverted and 
conditions (1.3) utilized to eliminate the unknowns /8/. For instance, if the jump H,- (Y) 
(n = 2, 3, 4, 5) are given on L, then by eliminating h,f we obtain the fundamental solution 

u*_i= Wpj* (p” 1,2*3), aZIUpj=Wpjr &‘upj =Wp+Z, j (p=k 5) (1.6) 

le- (zL+J]), d = r8+r3+ - (r1+)2 - (ra-)? (r,,f = A,+ _t A,,-) 

(n = 1,2,3,4) 

The quantities b,$ are obtained from b:f by replacing the indices& in all the 
quantities by their opposites: we will not present the expressions for C$, which are analogous 
in form since they will not be used henceforth. 

Analogous expressions are obtained for the components of the matrix U if other combinations 
of the functions from (1.1) are considered known. 

The fundamental solution obtained enables us to give a mathematical formulation of 
different problems for a composite anisotropic plane containing defects both within and on 
the line separating the half-planes in the form of singular integral equations (or their 
stem). In particular, if there are no defects on the line of separation, we should set 

H, (sl) IO@ = 2,3,4, 5) in (1.6). 

2. Reduction of the problem about a stringer to an integral equation. Let 
a stringer (a thin inclusion resistive to just tension of compression) be contacting along 
the whole length S =(O, a) (O<a< CQ) with the right half-plane (x> O), loadedbyaconcentrated 
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force P at the point z = y = 0 and located at an angle n/2--(jr+ 1 <n/2) to the line of 
separation of the materials (Fig-l) A concetrated force P* =(P1*,P,*) is applied to the plane 

at a certain point (x,, y,). The shear stress p(t) (t6? S) orginating 
‘,‘,‘*‘/‘,, f I / Yl<\<\ ‘\Y\\:\\:\<; in the contact zone and satisfying the equilibrium condition 

,‘//)$y$$&~,:(%‘>, is considered unknown. 

S p(t)dt=- p 
s 

By using (1.6) and realizing the condition of compatibility 
of the deformation of the stringer and the plane, we arrive at a 
singular integral equation with a fixed singularity at the point 
t = T = 0 with respect to the contact stress desired 

Fig.1 

K, [xl (t) - CoRr Ix1 (1) = f (t) (t fE I = IO, II) (2.2) 

x (0 = P w, co- UC*, c* - (ESOGF’, f @) = - fl (at) 

K, [x](t) ES -$- s’ +& dr + Im 2, qk,, -& ( +$- 
0 k. ?I=, 0 

fl(t)=+l tl(-- 5.) gh* 

t - E;;, 

&[Xltt)= fX(')dT, lJ=- d (A+cosacp +A+ sin 2~ + AI+ sin*e 
A-++(,+)' z, f 

eki, = v,,vi;‘, vk I: zk+ cos cp + sin cp, Ek = &G1 
& = FA*vii’, %:?I = I”n*v?, & = &I*~* + Y, 
gk = h,x,+k,, gk’,, = h,Z,+b;;, gr,, = &x,-b;, 

qk,, = b::h%,q-‘7 k,=ZI+ (zk+)coscp +- L2+(zk+)sincp 

q* = pl*l$. +- P&., l,t, = 1,* (Zkf) 

(E and So are Young's modulus and the cross-sectional area of the stringer). 
We will investigate (2.2) in the Banach space of the functions L, (I, P) (1 <P, P 0) = t* 

(1 - t)V, p - l>S > -1 +p Re V, p - I> r> -1 + p/2,0< Rev(l) with norm introduced in /8/, 
for example. 

3. Analysis of the behaviour of the solution at the endpoints. It can be 
shown that the solution in the neighbourhood of one possesses the asymptotic form 

x (t) = 0 ((1 - t)-'l+ t - 1 - 0 (3.1) 

Taking account of the property of integrability of the solution that results from condition 
(2.1), we assume that the asymptotic representation is valid (M,(t) is a certain polynomial 
of exact degree n) 

x(t)=O(t-VM,(Int)),t--,O, O~Rev<1,n=0,1,2,... (3.2) 

To determine v and n we set x (t) = & (t)t-VM,,(l~l t)(& (0)# 0, Ix,(O) 1-C m). Let v# 0, then by 
using the relationships (8.35) and (8.36) from /9/, an asymptotic formula can be obtained for 
the operator K, 

K1[X](f)=t-~X*(0)&=p G:" (v) M$’ (In t) + 9, (t) 
6: =o 

sinvnG,(v)=cos vn + G 
c 

[(- ekJv-* qkn - (- hJV-l h21 
72. =I 

Using (3.3) and also taking account of the boundedness of the functions f(t) and RI [xl(t) 

for x @) E L, (1, P) on I, we obtain the following relationship from (2.2) 

Here S& (t) (k = 1, 2) are certain functions possessing the property 

Q,(t)-;O(t-v+e), t- 0, e> 0 (3.5) 
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It follows directly from relationships (3.4) and (3.5) 

G,(")(v) = 0, (k = O,i, . . ., n) (3.6) 

If v =O in (3.2), then by using (8.30) and (8.311 from /9/, we obtain an asymptotic 
formula in place of (3.3) (Bj are Bernoulli numbers, Q,(t) is bounded at zero) 

Kl [x](t) = -J$ ~M$-” (In q hj, kG$-j) + R* (t) 
li=o j=O 

G(“’ = d” EO h. [sin mG, PO1 LO 
d? 

which, when utilized in the same way as (3.6)‘ results in the relationship 

G:;'=O (k=O,1,...,n) 

Comparing the last relationship with (3.61, we can find that-v in (3.2) is the (n-t- 1)- 
tuple root from the strip O,< RetI < 1 (including the point v = 0 also) for the transcendental 
equation 

G,(q)= sinnqG,(q) = 0 (3.7) 

It is not possible to show the existence and uniqueness of such a root in the general 
case. However, on satisfying the condition 

O<d,<f (3.8) 
d*= As+ + (A+)* 

d ( 
-$g++), k* = A& cosacp f A$ sin 2~ + An* sin* cp 

the presence and uniqueness of a root of the Eq.(3.7) in the strip O\(Rev<1 can be 
ensured. Condition (3.8) is satisfied for known anisotropic materials (including orthotropic 
and isotropic), where the root mentioned turns out to be real. Therefore, the index v of 
the singularity and the degree of the logarithmic polynomial in the asymptotic form (3.2) of 
the solution of (2.2) is determined by using the asymptotic properties of Cauchy-type integrals, 
despite the assertion made in /3/. 

The incorrectness of this assertion, as well as of the results in /2/, is related to the 
fact that a relationship of the type (3.4) was multiplied, without any justification, by a 
function whose order of zero agrees as t-+ 0 with the order of the singularity of the highest 
term in the principal part of the asymptotic form of the desired function. Hence, as t-+0 
terms having a stronger singularity than is controlled by condition (3.5) were lost. We note 
that this same procedure was used in /lo/. However, it did not result there in an erroneous 
result since it was assumed that the behaviour of the solution is only of a power nature. 

4. The exact solution of (2.2) for co=0 and its solvability in the general 
case. We consider the integral equation 

K* Ix1 (t) = f(t) (1 E 1) (4.1) 

which is obtained from (2.2) if we set co = 0 and which corresponds to the problem of a finite 
inextensible stringer. To obtain the exact solution we predetermine (4.1) on the whole semi- 
axis. 

L tx_m = f- @I + x+ w P < t < -1 w4 

x_(t), f_ (t) = (” (y @) I; 2 ;,’ I) 
(x,(t) is a certain function that equals zero in the interval (0, 1)). 

Analysis of the behaviour of x+(t) taking (3.1) and (3.2) into account shows 

~_(t)=O(t"VM"(lnt)), t-+0; x_(t)=O((i--t)-"a), t-+~--o 

x+Q)=O(@ - I)-'"), t - 1 + 0; x+ (t)=o(t-I), t- =a 

This implies the analyticity of the Mellin transform 

1 

x+(S)&+(t)t*-W, x_(S)==SX(t)l*-l~~ 
1 0 

for Res<1 and Res> Rev, respectively. 
Applying the Mellin integral transformation to (4.21, using the convolution theorem, and 

taking account of the integrals (2.2.4.25) and (2.2.4.26) in /ll/, we arrive at the Biemann 
problem 
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(4.X) X+(rl)=G(~)X_(9)$-F_(9) (rl~r:Res==yd 

Rev<n<t G(q)=G,(q), F_(rl)=-{Ir@Wf 
0 

where X,(q) are analytically continuable functions in the half-planes 52, and S2_, respectively 

(8,: Re s < yl; CL: Re s > n). Relationship (2 .l) and a theorem of Abel type for problem (4.3) 
supply the additional conditions 

X_ (1) = - P/a, x, (s)- 0 (s-‘I.) 

As a result of some reduction, the coefficient of 

tion 

G(?)=X(I~)G(~I), G(rQ= 

cosnq-gg,(~--)-~~(q--)-ggl(~-q) 
cosnll- 1 

(S-+m,SEr) (4.4) 

problem (4.3) allows of the representa- 

(4.5) 

K(q)&+*, K+(q)= r(l+‘lP) ) K_(rl)~~ 
+ r v/2 + r112) 

The functions K* (s) are analytic in the domains Q+ and sZ_, respectively, and the 

following asymptotic form holds: 

K*(s)=C’((~~/~)“*), s--tc~, SE& (4.6) 

The function G,(q) possesses the following properties (Hr is the class of functions 

satisfying the Holder condition on r): 

G, (s) # 0 (SE Q = Q_ fl Q,) (4.7) 

Ind G, (rl) = 0, 1nG 61) E Hr (11 E r) 

Therefore, well-known formulas /9/ can be used to factorize G,(ll). Furthermore, taking 

account of properties (4.4), (4.6) and applying Liouville's theorem, we obtain a solution of 

problem (4.3), and therefore of (4.1) also 

x(t)= .& -g$- y;(‘l) t-WI (t EI) 5 
@(s)=exp[&j*dt], ‘r(s)= 

1 ’ -1 K+ (1) 
2ni m F_ (t@- 2---s 

A__-_+yr-(1) 

(4.8) 

Taking account of the boundedness of the function f(t) (tEZ), it can be shown that the 

highest term in the asymptotic form x(t) is determined as t--t 0 bythe residueoftheintegrand 

at the point (v), the first (n + 1) -tuple pole of the function G,(q) to the left of the contour 

r, and has the form (3.2). 
It can be seen that all the above remains true if the arbitrary function f (t) E L, (1, P ) 

possessing the properties 

f(t)--o((l -t)“-‘I’), t -_, 1 - 0, f(t):=O(t-V*), t-+0 
s>O, Rev,,<Rev 

(4.9) 

is taken as the right-hand side of (4.1). 

According to (4.8), the homogeneous Eq.(4.1) (f(t)= 0) (corresponding to the case p, = 0) 
has one linearly dependent solution. It is shown analogously that the conjugate equation 

K,+ Ix*1 (t) = 0 (Kl* is the operator conjugate to K,) in the space L,(Z, p*) (q =p/(p -I), p* = 
t’J(l -t)@, CJ = --6q/p, o = -yq/p) conjugate to the space L,(Z, p) has only a zero solution under 

the condition (3.8). 
The following is therefore proved. 

Theorem 1. Under condition (3.8), Eq.(4.1) is a Noether equation in Lp(Z,P) (l<P-=W* 
p = t* (1 - t)V, p - i > 6 > --1 + p Re v, p - 1 > y > p/2 - 1) and its index equals one. Under 

the additional condition (2.11, Eq.(4.1) has the unique solution (3.8) that possesses the 

asymptotic properties (3.1), (3.2) under the conditions (4.8). 
The continuity and boundedness of the operator R, in L,(Z, p) as well as Theorem 3.4 

from /12/ and 4.1 enable us to formulate the following assertion. 

Theorem 2. Under condition (3.8), Eq.(2.2) is a Noether equation in L, (I, p). its index 

equals one, and under the additional condition (2.1) it has a unique solution that possesses 

the asymptotic properties (3.1), (3.2) under the conditions (4.9). 
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We note that questions of the solvability of singular integral equations with fixed 
singularities were apparently first investigated in /8/. In particular, the solvability is 
shown for the integral equation of the problem examined in /lo/. 

5. Exact solution for a semi-infinite stringer. Here (2.2) takes the form (a = 

00) 
K, [PI (t) - c*Rm ipl (t) = -fl (t) (0 < t < M) (5.1) 

As in the case of the finite stringer, the operator K, evidently yields exhaustive 
information about the nature of the behaviour of the solution as t--to, and therefore, the 
following asymptotic representation holds (see (3.2)) 

p' (t) = 0 (t’Mn (In t)), t --, 0 (5.2) 
As t* m the operator R, exerts a decisive influence on the nature of the behaviour 

of the solution. Thus if the stringer is inextensible (c* = 0), then the solution of (5.1) 
that vanishes at infinity as P' has the form (it is here assumed that P = 0) 

(T:R~'~=Y~,R~Y<Y~<~-RR~Y) 

F(q)=- ~jl(t)wdf 
0 

(We note that the homogeneous Eq.(5.1) has only a zero solution for c* = 0 ). If c,# 0, then 
for (5.1) to be satisfied as t--, OQ it is necessary to impose the following condition on the 
solution: p (t) = 0 (t-l-*), T > i, t 4 CO. Taking account of (5.2) and Theorem 3.1 of /13/, that 
latter enables us to obtain the first-order difference equation 

X(rl+1)=~G(rl)X(‘1)--~((q), q”r={Res=W (5.3) 

for the Mellin transform of the desired function that is analytic in the strip w=w+u 
W_ (w+ = (S I b < Reb c ya}, IV_ = (S I ya < Re s ( h + I), h .z (Re Y, l), y4 E (1, 2 - Re v)) ana tends 

tozeroas1ImsI-,~ within this strip. 
The represenation (4.5) holds for G(s). Here (see /14/, say) 

ns 
R, @I 

sin - 

&@+I) ’ 
K,(s)= -&c*’ (SEW) 

The function K,(s) is analytic in W, and the properties (4.7) hold for the function 
G,(s) that is analytic in the strip W+. Therefore, taking account of the results in /15, 16/, 
we write the canonical solution of the homogeneous problem (5.3) in the form 

X,(s) = Y (s)[Gl(s) K, (dl’, s E w,; x0 (s) = Y (s) KZ’ (s) 

SEW_ 

Y(s)=exp 2i 
1 s 
i lnGl(t)ctgrr(t-s)&} 

We note that another approach was applied to the solution of an equation of the form 
(4.4) in /3/. 

Following /16/, we represent the solution of the inhomogeneous problem (5.3) as follows 
(A is a constant determined from the additional condition (2.1)): 

X (s) = X, (s) IA + cos ns 2, (s)l (5.4) 
2, (s) = 2 (s) - F (s), s E W,; 2, (s) = Z (s), s E W- 

z (s) = -& 
s 

F, (t) sin-1 (r -s) dt, F (s) = k x&‘$ i) (= Rr 

in 
Passing to the limit as s-br in (5.4) and 

two equivalent forms after inversion 
using the Sokhotskii formula, we obtain (5.1) 

(5.5) 

A=-Pc,l/&+ Z_(l) 

Taking account of the analyticity properties of the functions Y*(s) in the strips W*, 
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respectively, the asymptotic representation (5.2) is easily confirmed, and the order of decrease 
of the solution at infinity, 7: L-Z --1, is easily refined. 

6. Numerical analysis of the transcendental equation. The roots of the tran- 
scendentalEq.(3.7), that depend on the elastic constants of the half-planes and the angle of 
rotationofthe stringer, play an important part in the solutions of the problems examined above. 
Anumericalanalysis confirmed that (3.7) has one real prime root in the interval (0, 1) for 
different combinations of the quantities to be varied when (3.8) is satisfied. 

In particular, results of calculations of the roots of (3.7) in the interval (0.1) are 
presented in Figs.2-4 for a plane from a boron epoxy composite (the left half-p1ane)wit.h the 
parameters E,- = 4.109 MN/m2, I&-= 4.104 MN/m2, G,'= 1.5.10" MN/m2 vI- = 0.25, zl- = 5.08i, and z*- = 0.62i 
and for a graphite epoxy composite (the right half-plane) with the parameters 
E,- = 1.6.10' MN/m2, G1* = 0.8.10' MN/m2, 

E,*= 4.108 MN/m*, 
Y,+ = 0.25, zl+ = 6 99i, zI+ = 0,711. The computations were performed 

for different values of the angles formed by the principal axes of the material elasticity of 
the right (qr) and left (&) half-planes with the axis z and the values of the stringer slope 
0 <'p < ni2. Curves 1-6 correspond to the values \pr = 0, XI%, x/4, 3x18, nl2. 

It is seen that a minimum value of the index of the singularity, in absolute value, can 
be achieved by a suitable selection of the angles $~,I#+,v. An analogous situation occurs if 
certain of the parameters mentioned are fixed for any reasons whatever. 

Fig.2 Fig.3 Fig.4 

The following regularity was also detected during the calcuations: if the left half-plane 
is stiffer than the right in its elastic characteristics, then the index of the singularity 
will always be greater than 0.5 and v-l as Et--+w(k= f,Z)); if the left half-plane is weaker, 
then vcO.5. In particular, if Ek-- 0, the quantity Y tends to the appropriate indices for 
theproblemof a stringer emerging on the boundary of an anisotropic half-plane (see Fig.2 in 

/l/). 
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SPHERICALLY LAYERED INCLUSIONS IN A HOMOGENEOUS ELASTIC MEDIUM* 

S.K. KANAUN and L.T. KUDRYAVTSEVA 

A three-dimensional homogeneous and isotropic elastic medium is considered 
that contains an isolated inhomogeneity (inclusion) in the shape of a 
sphere. It is assumed that the elastic moduli of the medium within the 
sphere depend only on the distance r to the centre of the inclusion. It 
is shown that in the case of a constant external field the problem of the 
equilibrium of a medium with an inhomogeneity reduces to a system of 
ordinary differential equations in three scalar functions of the variable 
I‘. An inhomogeneity with a piecewise-constant dependence of the elastic 
moduli on r (a spherically layered inclusion) is examined in detail. In 
this case, an effective calculational algorithm is proposed to construct 
the solution of the problem. The solution of the problem of one inclusion 
is then utilized to determine the effective elastic moduli of a medium 
with a random set of spherically layered inclusions and the estimates of 
the stress concentration at individual inhomogeneities. The method of 
an effective (selfconsistent) field is used to take account of interaction 
between the inclusions. 

The problem of a spherically layered inclusion in a homogeneous 
elastic medium was solved /l-3/ for particufar forms of the constant 
external field. The method proposed below enables us, within the framework 
of a single scheme, to examine both spherically layered inclusions with 
practically any number of layers and inclusions with elastic moduli 
varying continuously along the radius for an arbitrary homogeneous external 
stress (strain) field. 

1. The integral equation of the problem. In an infinite homogeneous medium with 
the elastic modulus tensor cp let there be an isolated inhomogeneity occupying a finite domain 
V whose characteristic function is V(z), where s(s,,x,,x~) is a point of the medium. We shall 
consider the elastic modulus tensor c(x) to be a piecewise-smooth function of the coordinates 
with the domain V. We examine the deformation of the medium e(x) under the effect of self- 
equilibrated forces at infinity and certain mass forces. 

Let Q(X) denote the external field of deformations that would exist in a medium when 
there are no inhomogeneities and the same loading conditions. It is known /4/ that a 
perturbation of the strain tensor e,(s)= a(z)- e,(x) in a medium with an inhomogeneity will 
satisfy the equation 

%z~ (4 + f Kafsrp (5 - 5’) c:ILvp @‘) Qvp (4 &’ = 

-jKa;,,cx- x‘)C~~~~(5’)eOYp(x’)dx’, c*(x)Y-c(x)-CLl 

(1.1) 

The kernel K(x)of the integral operator K in this equation is expressed in terms of the 
second derivatives of Green's function G(z) for the medium c0 

&err(z)= -(V,V1G~lt(s))(creff,p) (I.21 

The function G(x) satisfies the well-known equation (6a" is the Kronecker delta, and s(x) 
is the delta function) 

V,C~~'"V,.G~~(Z)= -6$6(x) (1.3) 
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